Paper accepted to ICML 2024

P2L

Abstract

We propose a new method for solving imaging inverse problems using text-to-image latent diffusion models as general priors. Existing methods using latent diffusion models for inverse problems typically rely on simple null text prompts, which can lead to suboptimal performance. To address this limitation, we introduce a method for prompt tuning, which jointly optimizes the text embedding on-the-fly while running the reverse diffusion process. This allows us to generate images that are more faithful to the diffusion prior. In addition, we propose a method to keep the evolution of latent variables within the range space of the encoder, by projection. This helps to reduce image artifacts, a major problem when using latent diffusion models instead of pixel-based diffusion models. Our combined method, called P2L, outperforms both image- and latent-diffusion model-based inverse problem solvers on a variety of tasks, such as super-resolution, deblurring, and inpainting.

Date
Jul 15, 2024 12:00 AM
Hyungjin Chung
Hyungjin Chung
Ph.D. student - Generative Models & Inverse Problems

My research interests include, but is not restricted to developing efficient, modular deep generative models (diffusion models), and solving real-world inverse problems (MRI, tomography, microscopy, phase retrieval, etc.) with deep generative priors.